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Abstract
We investigate the orbital selective Mott transition in two-band Hubbard models
by means of the Gutzwiller variational theory. In particular, we study the
influence of a finite local hybridization between electrons in different orbitals
on the metal–insulator transition.

1. Introduction

Metal–insulator transitions in Hubbard models with different densities of states have attracted
a lot of interest in recent years [1–10]. A dispute arose over the question of whether or not
the transition occurs at different interaction strengths for the wide and the narrow band. A
transition with different critical interaction parameters is usually denoted as an ‘orbital selective
Mott transition’ (OSMT). Apparently, a consensus has been reached that such an OSMT can
occur in Hubbard models with different bandwidths, subject to the bandwidth ratio α of the
narrow and the wide band and the value of the local exchange interaction J .

In most of the calculations in [1–10] the dynamical mean-field theory has been employed.
We will use multi-band Gutzwiller wave functions in order to study the OSMT. Such wave
functions were originally introduced by Gutzwiller [11] in order to study ferromagnetism
in the one-band Hubbard model. The evaluation of expectation values for the Gutzwiller
wavefunction poses a difficult many-particle problem. Therefore, Gutzwiller, in his
original work, used an approximation based on quasi-classical counting arguments [12, 13].
This ‘Gutzwiller approximation’ later turned out to be equivalent to an exact evaluation
of expectation values in the limit of infinite spatial dimension or infinite coordination
number [14]. Generalized Gutzwiller wavefunction for multi-band Hubbard models have first
been introduced and evaluated in the limit of infinite spatial dimensions in [15]. The formalism
was further generalized, e.g., for superconducting systems, in [16, 17].

The OSMT in a two-band Hubbard model has first been investigated by means of the
Gutzwiller theory in [9]. In that work the authors found an OSMT both for vanishing (J = 0)
as well as for finite (J �= 0) local exchange interaction. For J = 0 the critical bandwidth ratio
was found to be αc = 0.2. The Gutzwiller results in [9] were in good agreement with data from
DMFT and a slave-spin approach proposed in [7].

0953-8984/07/436206+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/43/436206
http://stacks.iop.org/JPhysCM/19/436206


J. Phys.: Condens. Matter 19 (2007) 436206 J Bünemann et al

In this work we will analyse the OSMT in a two-band model in more detail. In particular,
we permit a finite expectation value �0 = 〈ĉ†

i,1ĉi,2〉 for the local hybridization which can
change the nature of the OSMT. Such a hybridization could be finite spontaneously, solely due
to the Coulomb interaction, or due to a finite hybridization term in the Hamiltonian. We will
investigate both possibilities.

Our paper is organized as follows: the two-band Hubbard models are introduced in
section 2. In section 3 we define generalized Gutzwiller wave functions and give the results
for the variational ground-state energy for these wave functions in the limit of infinite spatial
dimensions. The orbital selective Mott transition in a two-band model without a finite local
hybridization is discussed numerically, and as far as possible analytically, in section 4. In
section 5 we investigate analytically the spontaneous hybridization in a spinless two-band
model. Finally, the hybridization effects in the full two-band case are studied in section 6,
and a summary closes our presentation in section 7.

2. Model systems

In this work we investigate the two-band Hubbard model

Ĥ =
∑

i, j;b;σ
tb
i, j ĉ

†
i,b,σ ĉ j,b,σ +

∑

i

Ĥi;at = Ĥ0 + Ĥloc. (1)

Here, the one-particle Hamiltonian Ĥ0 describes the hopping of electrons with spin σ on a
lattice with L sites. The index b = 1, 2 labels the two degenerate orbitals at each lattice site.
We assume that the hopping amplitudes

tb
i, j = αbti, j (2)

depend on the orbital index b only via overall bandwidth factors αb. This leads to an orbital-
dependent renormalization

Db(ε) = 1

αb
D

(
ε

αb

)
(3)

of the bare density of states

D(ε) = 1

L

∑

k

δ(ε − εk), (4)

where εk is the Fourier transform of ti, j . Throughout this work, only symmetric densities of
states will be considered D(−ε) = D(ε).

We will study the two-band model (1) with and without spin degrees of freedom. For the
full two-band model we assume that the orbitals have an eg-symmetry. The atomic Hamiltonian
then reads

Ĥ (2)
at = U

∑

b

n̂b,↑n̂b,↓ + U ′ ∑

σ,σ ′
n̂1,σ n̂2,σ ′ − J

∑

σ

n̂1,σ n̂2,σ

− J
∑

σ

ĉ†
1,σ ĉ2,−σ ĉ†

1,−σ ĉ2,σ − JC(ĉ
†
1,↑ĉ†

1,↓ĉ2,↓ĉ2,↑ + h.c.), (5)

where in cubic symmetry the two parameters U ′ and JC are determined by U ′ = U − 2J and
JC = J . Without spin, the atomic Hamiltonian Ĥi;at simply reads

Ĥ (1)
at = Un̂1n̂2, (6)

where the effective Hubbard interaction in this model can be derived from the interorbital
Coulomb (U ′) and exchange (J ) interaction through U = U ′− J . Apparently, the spinless two-
band model is mathematically equivalent to a one-band model with a spin-dependent density
of states. In the limit α2 → 0 it becomes a Falicov–Kimball model.
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Both atomic Hamiltonians (4) and (6) can be readily diagonalized

Ĥ (1),(2)
at =

∑

�

E�|�〉〈�|. (7)

The eigenstates |�〉 of Ĥ (1)
at are the empty state |∅〉, the two singly occupied states |b〉 and the

doubly occupied state |d〉. The diagonalization of Ĥ (2)
at leads to similar Slater determinants for

all particle numbers nat �= 2. In the two-particle sector, nat = 2, one finds the triplet ground
state with energy E� = U − 3J , in agreement with Hund’s first rule, and three singlet states
with energies E� = U − J (doubly degenerate) and E� = U + J ; for more details, see [15].

3. Gutzwiller wave functions

3.1. Definition

In order to study the two-band Hubbard models introduced in section 2, we use Gutzwiller
variational wave functions [11] which are defined as

|�G〉 ≡
∏

i

P̂i |�0〉. (8)

Here, |�0〉 is a normalized one-particle wavefunction and the local correlation operator P̂i has
the form

P̂ =
∑

�,�′
λ�,�′ m̂�,�′ , (9)

for each lattice site i , and

m̂�,�′ = |�〉〈�′ |. (10)

The real coefficients λ�,�′ and the one-particle wavefunction |�0〉 are variational parameters.
For systems without superconductivity it is safe to assume that the parameters λ�,�′ are finite
only for atomic states |�〉, |�′〉 with the same particle number. For ground states without
spin order one can further assume that only states with the same Ŝz quantum number lead to
finite non-diagonal variational parameters. Due to these symmetries the correlation operator (9)
contains up to five variational parameters for Ĥ (1)

at and up to 26 for Ĥ (2)
at .

Throughout this work we will investigate the half-filled case of our model systems and
allow for a finite local hybridization

�0 = 〈ĉ†
i,1,σ ĉi,2,σ 〉�0 . (11)

With respect to the operators ĉ† and ĉ, the local density matrix is therefore non-diagonal.
For analytical and numerical calculations, it is more convenient to work with creation and
annihilation operators

ĥ(†)i,1,σ = 1√
2

(
ĉ(†)i,1,σ + ĉ(†)i,2,σ

)
, (12)

ĥ(†)i,2,σ = 1√
2

(
ĉ(†)i,1,σ − ĉ(†)i,2,σ

)
(13)

which have a diagonal local density matrix,

n(h)b = 〈ĥ†
i,b,σ ĥi,b′,σ 〉�0 = δb,b′

(
1
2 ±�0

)
. (14)

With these operators the one-particle Hamiltonian Ĥ0 reads

Ĥ0 =
∑

i, j;b,b′;σ
t̃ b,b′
i, j ĥ†

i,b,σ ĥ j,b′,σ , (15)
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where

t̃ b,b′
i, j = ti, j

2
(δb,b′ +�α(1 − δb,b′)). (16)

Both atomic Hamiltonians (4) and (6) keep their form under a transformation from ĉ to ĥ.
By building a basis of Slater determinants |H 〉 with the operators ĥ†

i,b,σ the eigenstates of the
atomic Hamiltonian can be written as

|�〉 =
∑

H

T�,H |H 〉. (17)

3.2. Evaluation in infinite spatial dimensions

The evaluation of expectation values for Gutzwiller wave functions poses a difficult many-
particle problem. In this work we employ an evaluation scheme that becomes exact in the
limit of infinite spatial dimensions. Within this approach the expectation value of the local
Hamiltonian reads

〈Ĥat〉�G =
∑

�,�1,�2

E�λ�1,�λ�,�2 〈m̂�1,�2 〉�0 . (18)

Here, the expectation value 〈m̂�1,�2 〉�0 is given as

〈m̂�1,�2〉�0 =
∑

H

T�1,H T�2,H m0
H , (19)

where

m0
H =

∏

b(occ.)

n(h)b

∏

b(unocc.)

(1 − n(h)b ). (20)

For the expectation value of a hopping term in the one-particle Hamiltonian one finds

〈ĥ†
i,b,σ ĥ j,b′,σ 〉�G =

∑

b̃,b̃′
q̃bb̃q̃b′b̃′ 〈ĥ†

i,b,σ ĥ j,b′,σ 〉�0 , (21)

where the elements of the renormalization matrix q̃ are given as

qbb̃ =
∑

�1,�2,�3,�4

λ�1,�2λ�3,�4 〈�2|ĥ†
i,b,σ |�3〉

〈(
ĥ†

i,b̃,σ
|�4〉〈�1|

)〉
�0

1 − n(h)
b̃

. (22)

The remaining expectation value in (22) can be calculated in the same way as (19). Note the
symmetries q̃1,1 = q̃2,2 and q̃1,2 = q̃2,1. The renormalization factors for the ĉ-operators are
diagonal,

〈ĉ†
i,b,σ ĉ j,b,σ 〉�G = q2

b〈ĉ†
i,b,σ ĉ j,b,σ 〉�0 (23)

and given by

q
(12)

= q̃1,1 ± q̃1,2. (24)

Furthermore, the evaluation in infinite dimensions shows that the variational parameters
λ�,�′ and the one-particle wavefunction |ψ0〉 have to obey the constraints

1 = 〈P̂2〉ψ0 =
∑

�,�1,�2

λ�1,�λ�,�2 〈m̂�1,�2 〉�0 (25)

and

n(h)b δb,b′ = 〈P̂2ĥ†
b,σ ĥb′,σ 〉ψ0 =

∑

�,�1,�2

λ�1,�λ�,�2 〈m̂�1,�2 ĥ†
b,σ ĥb′,σ 〉�0 . (26)
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Figure 1. Renormalization factors qb for � = 0, and bandwidth ratios α = 0.2, α = 0.1; left:
J = 0; right: J = 0.1.

4. The orbital selective Mott transition in a two-band Hubbard model

In this section we investigate the metal–insulator transition in the two-band Hubbard model
without local hybridization. For our numerical calculations we use a semi-elliptic density of
states

D0(ε) = 2

π

√
1 − ε2, (27)

where we have defined the energy unit as D = 1, half of the bare bandwidth. For our analytical
considerations we do not need to specify the bare density of states (4). It turns out that D(ε)
enters the results only through the integral

ε0 =
∫ 0

−∞
dεD(ε)ε

(
= − 2

3π
for D(ε) = D0(ε)

)
(28)

and its value D(0) at the Fermi level. When we set α1 = 1 and introduce the bandwidth ratio
α ≡ α1/α2 � 1, the expectation value for the one-particle Hamiltonian in (1) is given as

〈Ĥ0〉�G = (q2
1 + q2

2α)ε0. (29)

Without hybridization, the variational ground-state energy has to be minimized only with
respect to the variational parameters λ�,�′ . In figure 1 (left) we show the resulting
renormalization factors qb as a function of U for J = 0 and two different bandwidth ratios
α. As already observed in [9], it depends on the value of α whether or not there is an orbital
selective Mott transition. For J = 0, the critical ratio is αc = 0.2, i.e. , the renormalization
factors q1, q2 vanish at two different critical values Uc2 < Uc1 if α < αc. By switching on
J , the critical ratio αc becomes larger and the Mott transitions take place at smaller values of
U ; see figure 1 (right). These findings are in good agreement with the results of dynamical
mean-field theory; for a comparison, see [9].

For J = 0, we can gain more insight into the nature of the different Mott transitions in our
model by some analytical calculations. First, we consider the case α > αc. If we approach the
Mott transition from below, we can neglect the variational parameters m∅ = m4 for empty and
fourfold occupied sites. Due to the high symmetry of the model for J = 0 the ground-state
energy is then a function of only three variational parameters, d, φ, and, θ ,

E = 2ε0d(1 − 2d) f (φ, θ)+ (1 + d)U, (30)

5
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Figure 2. Left: tan (φ0)
2 (straight) and tan (θ0)

2 (dashed) at the Mott transition as a function of
bandwidth ratio α; right: ratio of renormalization factors q2/q1 at the Mott transition as a function
of α.

where

f (φ, θ) = 4α1(sin(φ) sin(θ)+ √
2 cos(φ) cos(θ))2

+ 4α2(cos(φ) sin(θ)+ √
2 sin(φ) cos(θ))2. (31)

Here, tan (φ)2 gives the ratio of the probabilities to find a singly occupied site with an electron in
the wide and in the narrow orbital. The ratio of the probabilities for doubly occupied sites with
two electrons in the same and in different orbitals is parametrized by tan (θ)2. The variational
parameter d gives the total probability for single occupation. At the Mott transition, where
d → 0, the two angles φ, θ can be calculated analytically

θ0 ≡ θ(d → 0) = 1

2
arccos

(−17 + 2α − 17α2

3(1 − 34α + α2)

)
, (32)

φ0 ≡ φ(d → 0) = 1

2
arctan

(
(1 + α)2

√
2 sin 2θ0

(1 − α)(1 + cos 2θ0)

)
. (33)

Both values, tan (φ0)
2, and tan (θ0)

2 are shown as a function of α in figure 2 (left).
As expected, the weight of local states with no electron in the narrow band vanishes

for α → αc. The renormalization factors qb both vanish proportional to a square root,
qb ∼ √

Uc − U , when U approaches Uc from below. The ratio q2/q1 is finite for U → Uc

and goes to zero proportional to
√
α − αc, see figure 2 (right). Finally, the critical interaction

strength Uc2 = Uc1 is given as

Uc1 = 2|ε0| f (φ0, θ0) (α > αc). (34)

Next, we consider the case α < αc. For interaction parameters Uc2 < U < Uc1, the
electrons in the narrow band are localized and the wide band can be treated as an effective
one-band model. This leads us to the critical interaction parameter

Uc1 = 2|ε0| f (0, 0) = 16|ε0| (α < αc) (35)

for the Brinkmann–Rice transition of the wide band. Starting from the Brinkmann–Rice
solution for U < Uc1, we can expand the variational energy to leading (i.e. second) order
with respect to the three parameters {vi} = {φ, θ,m∅},

E = E0 +
3∑

i, j=1

vi Ẽi, jv j . (36)

6
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Figure 3. Critical interaction parameters Uc1 (straight) and Uc2 (dashed) as a function of α (see
equations (34), (35), (37)).

The localization of the narrow band becomes unstable when the matrix Ẽ has negative
eigenvalues for physical parameters vi > 0. This evaluation yields the following expression for
the narrow-band critical interaction strength

Uc2 = 16|ε0| α

1 − 4α
(α < αc). (37)

The resulting phase diagram for all 0 � α � 1 is shown in figure 3. Note, that all results shown
in this section are in agreement with [9], where the same variational energy functional has been
investigated.

5. The spinless two-band model

As the simplest example for a model with different densities of states we investigate the spinless
two-band model. In the half-filled case and without spontaneous hybridization (�0 = 0) the
constraints (25) and (26) can be solved analytically for this model. The variational energy is
then solely a function of λd ,

Evar = 4λ2
d

(
1 − λ2

d

2

)
ε0 + U

4
λ2

d . (38)

The energy (38) can be minimized analytically. As a result one finds the well known
Brinkmann–Rice solution

qBR = 1 −
(

U

Uc

)2

, (39)

dBR = 1

4

(
1 − U

Uc

)
(40)

for the renormalization factor q = δb,b′ qb,b′ and the expectation value of the double occupancy
d = λ2

d/4. The Brinkmann–Rice metal insulator transition occurs at the critical value
U = Uc ≡ 16|ε0|.

For the renormalization factors αb we set α1 + α2 = 2, i.e. the difference of the
bandwidths is parametrized by�α ≡ α1 −α2. Starting from the analytic solution for vanishing
hybridization we can calculate the variational ground-state energy to leading order in �0,

E�0 = EBR + C(U,�α)�2
0. (41)

7
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0.4

0.3

0.2

0.1

0
0

g(
U

/U
c)

U/Uc

1 2 3 4 5

Figure 4. Left: f (�α); right: g(U/Uc).

Figure 5. Left: phase diagram of the spinless two-band Hubbard model for different densities of
states at the Fermi level D(0) = 0.25, 0.2, 0.15, 0.13, 0.125, 0.1 (from the bottom to the top of the
figure) right: critical difference �αc in the limit U → ∞ as a function of D(0).

A spontaneous hybridization will appear if the coefficient C in (41) is negative. The analytical
evaluation leads to the Stoner-type instability criterion

f (�α)

Uc D(0)
<

U/Uc (2 + U/Uc)

2 (1 + U/Uc)
2

≡ g (U/Uc) , (42)

where

f (�α) ≡ �α

2 arcsinh(�α/
√

4 −�α2)
. (43)

In figure 4 the function f (�α) and the right hand side of equation (42) are shown as a
function of �α and U , respectively. As can be seen from this figure the function f (�α) and
therefore the left hand side of (42) approach zero for �α → 2. On the other hand, the right
hand side of (42) is positive for all U > 0. This means that for arbitrary values of U there
exist a critical bandwidth difference �αc with �0 > 0 for α > αc. Figure 5 (left) shows
the phase diagram for ground states with and without finite hybridization for different values
of the density of states D(0) at the Fermi level. Whether or not there is a transition in the
large U limit for all values of �α depends on the value of D(0). This is illustrated in figure 5
(right) where the critical difference �αc for the transition is shown as a function of D(0) in
the limit U → ∞. Note that a spontaneous hybridization has already been observed in a

8
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Figure 6. Renormalization factors q1, q2 and hybridization 2�0 for J = 0 and α = 0.15.

Falicov–Kimball model within a mean-field approximation [18]. This is in agreement with our
results in the limit�α → 2.

In summary, our analytical results on the spinless two-band Hubbard model show that
a difference in the bandwidth increases the tendency of the system to exhibit spontaneous
hybridization between the narrow band and the wide band. Mathematically, the reason for
this is quite simple. Both, the expectation value of the one-particle energy Ĥ0 and the Coulomb
interaction Ĥloc are changing quadratically in �0. However, in the limit �α → 0 the energy
gain from Ĥloc always beats the rise in energy due to Ĥ0. At first glance, one might think that
the same behaviour should be observed in the OSMT phase of the two-band model with the
only difference that it is not the bare but the effective width of the narrow band that vanishes.
As we will discuss in the next section, however, this hypothesis turns out to be incorrect.

6. Hybridization in the two-band model

In this section we present numerical results for the two-band model with a finite local
hybridization (11). The hybridization can develop either spontaneously, like in the spinless
model (section 5), or it can be caused by a finite hybridization term in the Hamiltonian. We
will discuss both effects separately.

6.1. Spontaneous hybridization

As shown in section 5, a vanishing width of the narrow band can be the driving force for a
spontaneous local hybridization of the wide and the narrow band. In our two-band model,
however, the vanishing of the effective bandwidth for q2 → 0 does not have the same effect.
This can be seen in figure 6, where we show the results for the renormalization factors q1,
q2 and the hybridization �0. Unlike in the spinless model, there is not necessarily a finite
hybridization if the effective narrow bandwidth goes to zero for U → Uc2. The reason for this
differing behaviour is an additional contribution to the one-particle energy of the full two-band
model. To leading order in �0 there is a third term from the expansion of the narrow-band
renormalization factor

q2 ≈ q2(�0 = 0)+ c�2
0. (44)

9
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1

0.8

0.6

0.4

0.2

0
0 1 2 3

q2

q1q b

Figure 7. Left: expectation value 2�0 as a function of U for several values of η̃; right:
renormalization factors q1, q2 for α = 0.15 and η̃ = 0.025D, J = 0.05U (straight), η̃ = 0.025D,
J = 0.025U (dashed), η̃ = 0.05D, J = 0.025U (dotted).

The coefficient c is negative and, multiplied with the negative bare one-particle energy of
the narrow band it leads to an increase of the total energy. This contribution to the energy
overcompensates the negative term from the Coulomb interaction.

A finite hybridization �0 sets in at larger values of U when the system is already in the
OSMT phase, see figure 6. Numerically, it seems as if �0 approaches its maximum value
�max

0 = 1/2 only in the limit U → ∞.
In all systems with finite values of J that we investigated, we did not find a solution with

spontaneous hybridization. It is more likely, though, that for values of J smaller than some
critical parameter Jc there is a solution with a finite hybridization. However, it is difficult to
determine this small parameter Jc numerically.

6.2. Finite hybridization in the Hamiltonian

The assumption that there is no hybridization between the two degenerate bands in the
Hamiltonian of our model is quite artificial. In this section we will therefore investigate how
the OSMT is affected if we add a hybridization term of the form

Ĥhyb = −η̃
∑

i,σ

ĉ†
i1σ ĉi2σ + h.c. (45)

to our Hamiltonian (5). For J = 0 we find that the OSMT phase is destroyed for any finite
value of η̃. This is illustrated in figure 7 (left) where we show the expectation value �0 as a
function of U for several values of η̃.

For finite J , the behaviour of our model is more ambiguous. As we have seen before, a
finite J stabilizes the OSMT phase whereas a finite η̃ tends to destroy it. Therefore, it depends
on the ratio of both quantities whether or not an OSMT is found. Figure 7 (right) shows the
renormalization factors qb for different values of J and η̃. For J = 0.025U and η̃ = 0.05D
the OSMT is completely suppressed. This is still the case for the smaller value η̃ = 0.025D,
although the narrow-band factor q2 is already quite small in the region of U parameters where
it would be zero for η̃ = 0. Finally, for larger values J = 0.05U an OSMT phase is restored
for interaction parameters U > Uc2 where Uc2 is larger then the corresponding value for η̃ = 0.

In summary, our numerical calculations show that appearance and disappearance of an
OSMT results from a subtle interplay of the local exchange interaction J and the local
hybridization η̃. These findings seems to be in no contradiction to previous work on
hybridization effects in systems with an OSMT [5, 7].

10
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7. Summary

In this work we have investigated the orbital selective Mott transition (OSMT) in two-band
Hubbard models with different densities of states by means of the Gutzwiller variational theory.
We were particularly interested in the question of how the OSMT is modified when we allow
for a finite local hybridization between the wide band and the narrow band. In the two-band
model without spin degrees of freedom there always is a spontaneous hybridization if the
narrow bandwidth goes to zero. However, we did not find such a behaviour in the full two-
band model. There, spontaneous hybridization was only seen for vanishing local exchange
interaction, J = 0, and for Coulomb parameters U larger then the critical parameter at which
the electrons in the narrow band localize. By adding a local hybridization term ∼η̃ to the
Hamiltonian, the phase diagram becomes more involved. Whether or not an OSMT takes place
depends on the relative strength of J and η̃. The exchange interaction J tends to stabilize the
OSMT phase, whereas the hybridization η̃ tends to destroy it. Since metal–insulator transitions
are captured within the Gutzwiller variational theory only on a relatively crude level, further
DMFT calculations are desirable to prove or disprove our findings.

References

[1] Liebsch A 2003 Europhys. Lett. 63 97
[2] Liebsch A 2003 Phys. Rev. Lett. 91 226401
[3] Liebsch A 2004 Phys. Rev. B 70 165103
[4] Koga A, Kawakami N, Rice T and Sigrist M 2004 Phys. Rev. Lett. 92 216402
[5] Koga A, Kawakami N, Rice T and Sigrist M 2005 Phys. Rev. B 72 045128
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